3,302 research outputs found

    Symmetries and itineracy in nonlinear systems with many degrees of freedom

    Get PDF
    Tsuda examines the potential contribution of nonlinear dynamical systems, with many degrees of freedom, to understanding brain function. We offer suggestions concerning symmetry and transients to strengthen the physiological motivation and theoretical consistency of this novel research direction: Symmetry plays a fundamental role, theoretically and in relation to real brains. We also highlight a distinction between chaotic "transience" and "itineracy"

    Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study.

    Get PDF
    Despite similar behavioral effects, attention and expectation influence evoked responses differently: Attention typically enhances event-related responses, whereas expectation reduces them. This dissociation has been reconciled under predictive coding, where prediction errors are weighted by precision associated with attentional modulation. Here, we tested the predictive coding account of attention and expectation using magnetoencephalography and modeling. Temporal attention and sensory expectation were orthogonally manipulated in an auditory mismatch paradigm, revealing opposing effects on evoked response amplitude. Mismatch negativity (MMN) was enhanced by attention, speaking against its supposedly pre-attentive nature. This interaction effect was modeled in a canonical microcircuit using dynamic causal modeling, comparing models with modulation of extrinsic and intrinsic connectivity at different levels of the auditory hierarchy. While MMN was explained by recursive interplay of sensory predictions and prediction errors, attention was linked to the gain of inhibitory interneurons, consistent with its modulation of sensory precision

    Evidence for surprise minimization over value maximization in choice behavior

    Get PDF
    Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents' to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus 'keep their options open'. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations

    Knowing one's place: a free-energy approach to pattern regulation.

    Get PDF
    Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to model shape. Here, we offer a proof of principle that self-assembly is an emergent property of cells that share a common (genetic and epigenetic) model of organismal form. This behaviour is formulated in terms of variational free-energy minimization-of the sort that has been used to explain action and perception in neuroscience. In brief, casting the minimization of thermodynamic free energy in terms of variational free energy allows one to interpret (the dynamics of) a system as inferring the causes of its inputs-and acting to resolve uncertainty about those causes. This novel perspective on the coordination of migration and differentiation of cells suggests an interpretation of genetic codes as parametrizing a generative model-predicting the signals sensed by cells in the target morphology-and epigenetic processes as the subsequent inversion of that model. This theoretical formulation may complement bottom-up strategies-that currently focus on molecular pathways-with (constructivist) top-down approaches that have proved themselves in neuroscience and cybernetics

    A probabilistic interpretation of PID controllers using active inference

    Get PDF
    In the past few decades, probabilistic interpretations of brain functions have become widespread in cognitive science and neuroscience. The Bayesian brain hypothesis, predictive coding, the free energy principle and active inference are increasingly popular theories of cognitive functions that claim to unify understandings of life and cognition within general mathematical frameworks derived from information and control theory, statistical physics and machine learning. The connections between information and control theory have been discussed since the 1950’s by scientists like Shannon and Kalman and have recently risen to prominence in modern stochastic optimal control theory. However, the implications of the confluence of these two theoretical frameworks for the biological sciences have been slow to emerge. Here we argue that if the active inference proposal is to be taken as a general process theory for biological systems, we need to consider how existing control theoretical approaches to biological systems relate to it. In this work we will focus on PID (Proportional-Integral-Derivative) controllers, one of the most common types of regulators employed in engineering and more recently used to explain behaviour in biological systems, e.g. chemotaxis in bacteria and amoebae or robust adaptation in biochemical networks. Using active inference, we derive a probabilistic interpretation of PID controllers, showing how they can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation under simple linear generative models.most common types of regulators employed in engineering and more recently used to explain behaviour in biological systems, e.g. chemotaxis in bacteria and amoebae or robust adaptation in biochemical networks. Using active inference, we derive a probabilistic interpretation of PID controllers, showing how they can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation under simple linear generative models

    Deep Active Inference for Partially Observable MDPs

    Full text link
    Deep active inference has been proposed as a scalable approach to perception and action that deals with large policy and state spaces. However, current models are limited to fully observable domains. In this paper, we describe a deep active inference model that can learn successful policies directly from high-dimensional sensory inputs. The deep learning architecture optimizes a variant of the expected free energy and encodes the continuous state representation by means of a variational autoencoder. We show, in the OpenAI benchmark, that our approach has comparable or better performance than deep Q-learning, a state-of-the-art deep reinforcement learning algorithm.Comment: 1st International Workshop on Active inference, European Conference on Machine Learning (ECML/PCKDD 2020

    The free energy principle for action and perception: A mathematical review

    Get PDF
    The ‘free energy principle’ (FEP) has been suggested to provide a unified theory of the brain, integrating data and theory relating to action, perception, and learning. The theory and implementation of the FEP combines insights from Helmholtzian ‘perception as inference’, machine learning theory, and statistical thermodynamics. Here, we provide a detailed mathematical evaluation of a suggested biologically plausible implementation of the FEP that has been widely used to develop the theory. Our objectives are (i) to describe within a single article the mathematical structure of this implementation of the FEP; (ii) provide a simple but complete agent-based model utilising the FEP and (iii) to disclose the assumption structure of this implementation of the FEP to help elucidate its significance for the brain sciences

    Active Inference and Learning in the Cerebellum

    Get PDF
    This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme’s anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry—and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception

    Computational Phenotyping in Psychiatry: A Worked Example

    Get PDF
    Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology-structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry
    corecore